

SITOR semiconductor fuses, connected in parallel

SENTRON

Restricted / © Siemens AG 2014. All Rights Reserved.

siemens.com/lowvoltage

Parallel connection of SITOR fuses Product training

 Parallel and series connection of fuses

SIEMENS

- UL requirements for the parallel and series connection of fuses
- SITOR semiconductor fuses, connected in parallel
- Type series, technical specifications, designs und dimensions
- Customers, applications

- Parallel and series connection of fuses 3
- UL requirements for the parallel and series connection of fuses 9
- Type series, technical specification, designs and dimensions
 11
- Customers, applications 16
- Competitors 19

SIEMENS

Parallel and series connection of fuses

Cable connection range

The parallel connection of NH fuse systems is standard practice for extending the rated current range of a particular size. For example, a lowvoltage distribution system can be configured more compactly if two NH 3 bars are used in parallel instead of one NH 4a bar as feeder unit for the busbar. Similarly, it is standard practice in wind turbines to connect several NH fuse bars in parallel for the feeder unit on the low-voltage side. And the parallel connection of NH fuses is also customary for semiconductor protection.

Restricted / © Siemens AG 2014. All Rights Reserved.

Page 4 2014-06-30

Parallel and series connection of fuses

If suitable fuse holders are not supplied already fitted by the manufacturer, it is essential to observe a number of important rules and instructions for the parallel connection of fuses and safety switching devices:

- The fuse links must have the same design, size and rated data, i.e. ideally they should be identical in construction.
- Incoming and outgoing lines should produce a uniform distribution of current. On long lines it is recommended to check the lengths. Alternatively, cables are connected together in parallel. In this case, however, the connected lines are not protected individually but only as a bundle.
- Parallel-connected NH fuse switch-disconnectors should have mechanically coupled operating levers and should have only moderate force to be actuated.
- The rated current of n parallel fuse links is always smaller than the sum of the rated currents n x In due to the non-uniform distribution of current.

Parallel and series connection of fuses

Exception: Several parallel-connected SITOR semiconductor fuses can be assigned to one semiconductor component without a reduction of current.

- The fusing integral of n parallel fuses equals approx. n² x l²t of the individual fuses.
- The let-through current of n parallel fuses equals approximately n x I_c of the individual fuses for an unaffected short-circuit current of I_p / n.
- The breaking capacity of the combination cannot be assumed to exceed I₁ of the individual fuses.
- With NH partial-range fuses, the breaking range (minimum breaking current) does not begin below n x k₂l_n.
- To determine the temperature rise, the full operational current must be assumed for all n parallel switching devices because it is only a single load circuit.

Parallel and series connection of fuses

Advantages of energy monitoring

Unlike with parallel connection, the series connection of fuses does not as a rule increase the range of application and particularly not the rated voltage. Given the inevitable product tolerances it can be assumed that even with the series connection of identical fuses each single fuse will need to withstand the full recovery voltage after a power interruption.

Exception

With SITOR semiconductor fuses, the voltage distribution can be assumed to be uniform if it is certain that the anticipated short-circuit current will lead to melting times of \leq 10 ms.

Type-related data can be found in the SITOR configuration documents.

- Parallel and series connection of fuses
 4
- UL requirements for the parallel and series connection of fuses 8
- Type series, technical specification, designs and dimensions
 11
- Customers, applications 16

Restricted / © Siemens AG 2014. All Rights Reserved.

Page 8 2014-06-30

UL requirements for the parallel and series connection of fuses

UL no longer permits parallel / series connection of fuses and refers to a section in the NEC

"240.8 Fuses and circuit breakers shall be permitted to be connected in parallel where they are factory assembled in parallel and listed as a unit. Individual fuses, circuit breakers, or combinations thereof shall not otherwise be connected in parallel."

Settings as seen in the picture on the left are, according to ULregulations, not permitted but were widely used in the past.

Restricted / © Siemens AG 2014. All Rights Reserved.

Page 9 2014-06-30

- Parallel and series connection of fuses
 4
- UL requirements for the parallel and series connection of fuses 9
- Type series, technical specification, designs and dimensions
 10
- Customers, applications 16

Restricted / © Siemens AG 2014. All Rights Reserved.

Page 10 2014-06-30

SITOR semiconductor fuses, connected in parallel

 Highest energy limit for protecting power semiconductors

SIEMENS

- Extremely high current rise due to energy store (VSI-Rating)
- Rising converter power levels require higher currents and voltages
- DC currents up to 2400A at 1250V d.c.
- AC currents up to 1900 A at 690V a.c. viable
- According to UL 248-13 (UL Recognized) and IEC 60269-4.

SITOR semiconductor fuses, connected in parallel

Sub-project 1 DC fuses

								P _v		ΔT_{Kont}				
MLFB	l _n	U _n	IR	Char.	Size	Aø Cu	Base	@ I _n	@0.7l _n	@I _n	@0.7In	lc@100kA	² t _s	i ² t _{aus} @1500V
3NB1 126 4KK11	200A	1250Vdc	100kA	aR	1L	95mm ²	Bar	50W	21W	53K	24K	7.3kĀ	10,700	39,000
3NB1 128 4KK11	250A	1250Vdc	100kA	aR	1L	120mm ²	Bar	51W	21W	53K	25K	9.4kĀ	24,500	80,500
3NB1 231 4KK11	315A	1250Vdc	100kA	aR	2L	185mm ²	Bar	63W	27W	55K	27K	11.0kĀ	41,000	129,000
3NB1 234 4KK11	400A	1250Vdc	100kA	aR	2L	240mm ²	Bar	68W	29W	56K	26K	14.8kĀ	96,000	290,000
3NB1 337 4KK11	500A	1250Vdc	100kA	aR	3L	300mm ²	Bar	89W	36W	55K	26K	18.3kĀ	195,000	600,000
3NB1 345 4KK11	800A	1250Vdc	100kA	aR	3L	500mm ²	Bar	135W	53W	76K	26K	28.0kĀ	770,000	1,910,000

SIEMENS

								Pv		ΔT_{Kont}				
MLFB	I _n	U _n	IR	Char.	Size	Aø Cu	Base	@ I _n	@0.7l _n	@I _n	@0.7In	lc@100kA	² t _s	i ² t _{aus} @1500V
3NB2 345 4KK16	800A	1250Vdc	150kA	aR	2x2L	500mm ²	Bar	160W	68W	74K	27K	27.5kĀ	375,000	1,150,000
3NB2 128 4KK16	1000A	1250Vdc	150kA	aR	2x3L	600mm ²	Bar	195W	77W	87K	39K	34.1kĀ	787,000	2,250,000
3NB2 231 4KK16	1400A	1250Vdc	150kA	aR	2x3L	1200mm ²	Bar	250W	96W	89K	39K	46.5kĀ	2,150,000	5,100,000
3NB2 234 4KK16	1600A	1250Vdc	150kA	aR	2x3L	1600mm ²	Bar	275W	110W	76K	39K	52.7kĀ	3,500,000	7,450,000
3NB2 337 4KK17	2100A	1250Vdc	150kA	aR	3x3L	1800mm ²	Bar	365W	160W	77K	39K	61.0kĀ	5,750,000	11,950,000
3NB2 345 4KK17	2400A	1250Vdc	150kA	aR	3x3L	2000mm ²	Bar	445W	165W	89K	48K	69.1kĀ	9,050,000	18,100,000

The types are now available and will be delivered within the stated time of delivery.

Sub-project 2 AC fuses

								P _v		$\Delta {\sf T}_{\sf Kont}$				
MLFB	l _n	U _n	IR	Char.	Size	Aø Cu	Base	@ I _n	@0.7l _n	@I _n	@0.7In	lc@100kA	² t _s	i²t _{aus} @690V
3NB3 350 1KK26	1000A	690Vac	100kA	gR	2xBG3	600mm ²	Bar	138W	57W	101K	56K	34.7kĀ	298,000	1,400,000
3NB3 351 1KK26	1100A	690Vac	100kA	gR	2xBG3	700mm ²	Bar	110W	44W	96K	39K	44.9kĀ	680,000	3,000,000
3NB3 352 1KK26	1250A	690Vac	100kA	gR	2xBG3	800mm ²	Bar	104W	46W	38K	19K	48.9kĀ	897,000	4,100,000
3NB3 354 1KK26	1350A	690Vac	100kA	gR	2xBG3	900mm ²	Bar	126W	55W	44K	23K	51.2kĀ	1,100,000	4,800,000
3NB3 355 1KK26	1400A	690Vac	100kA	gR	2xBG3	1000mm ²	Bar	127W	55W	48K	23K	52.9kĀ	1,150,000	5,200,000
3NB3 357 1KK26	1600A	690Vac	100kA	gR	2xBG3	1100mm ²	Bar	152W	64W	57K	27K	58.5kĀ	1,550,000	6,900,000
3NB3 358 1KK26	1700A	690Vac	100kA	gR	2xBG3	1200mm	Bar	143W	62W	57K	26K	66.9kĀ	2,370,000	10,000,000
								P _v		Δ T _{Kont}				
MLFB	l _n	U _n	IR	Char.	Size	Aø Cu	Base	@ I _n	@0.7ln	@I _n	@0.7In	lc@100kA	² t _s	i²t _{aus} @690V
3NB3 358 1KK27	1700A	690Vac	100kA	gR	3xBG3	1200mm ²	Bar	179W	77W	64K	30K	57.5kĀ	1,550,000	16,400,000
3NB2 362 1KK27	1900A	690Vac	100kA	gR	3xBG3	1600mm ²	Bar	196W	84W	70K	33K	61.9kĀ	1,850,000	8,200,000

SIEMENS

The types are now available and will be delivered within the stated time of delivery.

Restricted / © Siemens AG 2014. All Rights Reserved.

Page 14 2014-06-30

- Parallel and series connection of fuses
 4
- UL requirements for the parallel and series connection of fuses 9
- Type series, technical specification, designs and dimensions
 11
- Customers, applications 15

Restricted / $\ensuremath{\mathbb{C}}$ Siemens AG 2014. All Rights Reserved.

Page 15 2014-06-30

Customers, applications

- Converters
- Rectifiers
- Inverters
- Solid-state switching devices
- Soft starters
- Heating control systems
- Power semiconductors
- Solid-state motor starters
- Power supply units (UPS)
- Wind turbines
- Energy stores

Process automation

Application

- Plastic injection technology
- Water, waste water

Manufacturing automation

Application

- Automotive industry
- UPS
- Airports and conveyor systems

Electrical equipment

Application

Solar energy and heating systems

SITOR semiconductor fuses, connected in parallel - Customers, applications

Main applications

SIEMENS

- Large drives
- Energy stores
- DC bus systems